
Bulk Documentation
Release 0.4.2

paul@colomiets.name

Jul 11, 2018

Contents

1 Configuring Bulk 3
1.1 Overview . 3
1.2 Versions . 4
1.3 Package Metadata . 5
1.4 Repositories . 5

2 Version Bookkeeping 7
2.1 Basics . 7
2.2 Releasing a Project . 8
2.3 Building a Pre-Release Project . 8
2.4 Other Commands . 9

3 Q & A 11
3.1 Why version number and file existence is optional? . 11

4 Indices and tables 13

i

ii

Bulk Documentation, Release 0.4.2

Contents:

Contents 1

Bulk Documentation, Release 0.4.2

2 Contents

CHAPTER 1

Configuring Bulk

Contents:

1.1 Overview

Bulk’s configuration file is usually bulk.yaml in the root if your project but can be overrident by -c or --config
for most subcommands.

This is yaml config parsed by quire so you can use most of its features there.

Configuration file consists of a declaration of minimum supported version of bulk and three sections, here is an
example:

minimum-bulk: v0.4.5

versions:
- file: setup.py

regex: ^\s*version\s*=\s*["']([^"']+)["']
- file: your_module/__init__.py

regex: ^__version__\s*=\s*["']([^"']+)["']

metadata:
name: your-app
short-description: A great app in python
long-description:
A very great app in python

repositories:
- kind: debian

suite: bionic
component: your-app

All sections are optional if you don’t want to use some of the functionality here. In particular:

3

http://quire.readthedocs.io/

Bulk Documentation, Release 0.4.2

1. versions needed if you want to keep project version in source code in multiple places and want to update it
using bulk

2. metadata is a package metadata, if you don’t build .deb package you don’t need it

3. repositories is a repository metadata, if you don’t have debian/ubuntu repository you don’t need it.

1.2 Versions

Versions section help you with bookkeeping a version in your application, here is the sample of versioning for python
application

versions:
- file: setup.py

regex: ^\s*version\s*=\s*["']([^"']+)["']
- file: your_module/__init__.py

regex: ^__version__\s*=\s*["']([^"']+)["']

You might also add an example to your readme and keep version in documentation updated too:

versions:

- file: setup.py
regex: ^\s*version\s*=\s*["']([^"']+)["']

- file: your_module/__init__.py
regex: ^__version__\s*=\s*["']([^"']+)["']

- file: doc/conf.py
regex: ^version\s*=\s*u?["']([^"']+)["']
partial-version: ^\d+\.\d+ # no patch version

- file: doc/conf.py
regex: ^release\s*=\s*u?["']([^"']+)["']

- file: README.rst
regex: pip\s+install\s+your-module==(\S+)

Options:

file Filename to search version in, relative to project directory (usually a directory that contains bulk.yaml)

files A list of files to search. This is useful if you can use same regex in multiple files.

Note: Neither existence of file or any one in files is enforced. if you make a typo file will be silently
skipped. Always use bulk check-version after modifying rules.

On the upside is that you can use same bulk.yaml for many similar projects and versions that aren’t present
will be skipped.

regex A regular expression that matches version. It must contain a single capturing group (i.e. a (parenthised
expression)) for capturing actual version. Regex can match only on a single line.

The expression shouldn’t be too strict and should not try to validate the version number itself. I.e. if version
is quoted anything inside the quotes should be considered version, if it isn’t anything to next white space or
newline is okay.

4 Chapter 1. Configuring Bulk

Bulk Documentation, Release 0.4.2

Too strict version pattern risk to be either to replace 1.2.3 to 1.2.4 in 1.2.3-beta.1 keeping beta suffix,
or to skip 1.2.3-beta.1 line in a file without updating it because it doesn’t match.

If regex matches multiple times all matching lines are treated as version number. Also multiple entries with
the same file and different rules can be configured.

partial-version A regular expression that allows to select only portion of version number. Few examples:

1. ^\d+\.\d+ – selects major.minor version but not patch

2. -.*$ – selects -alpha, -beta.1, -31-g12bd530 or any other pre-release suffix in version number.

block-start, block-end Marks block where to find version number in.

For example, in Cargo.toml version number is in the [package] section and named version, whereas
version= in other case may denote version of other things like pedependencies. So we use this:

- file: Cargo.toml
block-start: ^\[package\]
block-end: ^\[.*\]
regex: ^version\s*=\s*"(\S+)"

You can specify single file multiple times in versions section. Which effectively means you can fix version in
multiple different sections.

multiple-blocks (default false) By default bulk stops scanning this file for this rule on the first block-end
after block-start. If this setting is set to true searches for the next block-start istead. This option
does nothing if no block defined.

1.3 Package Metadata

Package information is stored in metadata section in bulk.yaml. Here is an example:

metadata:
name: your-app
short-description: A great app in python
long-description:
A very great app in python. You can use it to do
amazing things

depends: [python3]

Options:

name Package name used to name a .deb file

short-description Short description of the package as shown in package search results and in other places. It
should be a one-liner

long-description Long description of the package. Usually shown in GUI tools as a part of package detail.

depends List of package dependencies. It can consists of any expression allowed in debian packages. But note if
you need different dependencies for different packages built (i.e. for different ubuntu distributions) you need to
use different bulk.yaml configs and specify ones explicity to bulk pack.

1.4 Repositories

When using bulk it’s common to track multiple repositories using single config. Here is an example:

1.3. Package Metadata 5

Bulk Documentation, Release 0.4.2

repositories:

- kind: debian
suite: bionic
component: your-app-testing
keep-releases: 1000

- kind: debian
suite: bionic
component: your-app
keep-releases: 1
match-version: ^\d+\.\d+\.\d+$

This keeps 1000 releases in testing repository. And just one release in stable repository. Where stable release has strict
semantic version and all releases are included in testing repository (including stable). Non-stable releases themeselves
are probably versioned with git describe yielding versions like this: 1.2.3-34-gde103b3.

Options:

kind Kind of the repository. Only debian is currently supported.

suite Suite of the repository. For ubuntu it’s usually a release codename such as xenial or bionic.

component Component of the repository. Common convention is that it’s a application name (so technically you can
put multiple applications in the same repository). Also it may include modifier like -testing or -stable.

keep-releases Number of releases of the package to keep in this repository. By default all releases are kept (i.e.
it’s never cleaned up). Usual debian tools keep exactly one package.

It’s also a good idea to keep two repositories: your-app with keep-releases: 1 and
your-app-stable with keep-releases: 100 which keep older packages. The index of the first
repository is smaller and faster to download and the latter can be used to downgrade. Note: repositories share a
pool of packages so .deb file itself isn’t duplicated for two repositories.

match-version Only add version matching this regex to the repository.

There are two good usecases for the feature:

1. Sort out testing and stable versions (as in example above)

2. Use a single bulk repo-add command to add packages for every distro. This works by append some-
thing like +bionic1 suffix to a package version and add a respective match-version for that distri-
bution.

skip-version This is the same as match-version but is a negative filter. If both are matched
skip-version takes precedence.

add-empty-i386-repo (default false) When building amd64-only repo also add an empty index for i386
counterpart. This is needed to prevent errors on apt update on systems which are configured to fetch both
64bit and 32bit versions of packages.

For now it’s known that ubuntu precise (12.04) default install only has this problem. So since precise reached
its end of life this option is deprecated.

6 Chapter 1. Configuring Bulk

CHAPTER 2

Version Bookkeeping

Bulk can be used to sync version of your application to various places in code.

2.1 Basics

Bulk uses regular expressions to find versions in some file. For example, here is how we track versions in typical
python project:

versions:

There is usually a version in setup.py
- file: setup.py

this isn't 100% correct as version can end in different quote or
there might be few version parameters in a file, but this is good
enough for many projects, other projects might need to tweak matcher
regex: ^\s*version\s*=\s*["']([^"']+)["']

Also it's a good idea to put library version into
a __version__ attribute of the module itself
- file: your_module/__init__.py

regex: ^__version__\s*=\s*["']([^"']+)["']

Put it in bulk.yaml and now you can find out version with:

> bulk get-version
1.3.5

Yes, the first time you’ve written setup.py and __init__.py you needed to put version yourself. This is usually
handled by project boilerplate.

7

Bulk Documentation, Release 0.4.2

2.2 Releasing a Project

If you obey semantic versioning in the project version run one of:

> bulk bump --breaking -g
> bulk bump --feature -g
> bulk bump --bugfix -g

The commands above will increment a major, minor or patch version of your version number, commit the changes
with a comment of Version bumped to v1.3.6 and create an annotated tag v0.3.6 by starting an editor and
showing you changes since previous tag. You can opt-out commit and tag creation by omitting -g which is equivalent
of longer --git-commit-and-tag.

You can also use -1, -2 and -3 which increment the specific component of version. Technically they are are equiva-
lent to above except when version is zero-based 0.x.

Note: in case of 0.x versions the version numbers are shifted. I.e. if you have two zeros numbers 0.0.x any
bump with increment a single version. If you have 0.x.y number second component will increment with both
--breaking and --feature. This is how many existing tools handle semver. Use -1, -2 if in doubt or to switch
from 0.x versions to 1.x.

For date-based versioning use:

> bulk bump -dg

This will force your version to something like v180317.0. If you will subsequently run this command on the same
day you will get v180317.1 and so forth.

Note: The date here is UTC to avoid issues with different people releasing in different timezones.

Another way to update is to use set-version:

> bulk set-version v1.3.5-beta.1
./your_module/__init__.py:1: (v1.3.5 -> v1.3.5-beta.1) __version__ = '1.3.5-beta.1'
./setup.py:6: (v1.3.5 -> v1.3.5-beta.1) version='1.3.5-beta.1',

This is useful to set some pre-release version as you see in example because we don’t have a command-line flag for
that or in case you have different version format or just want to skip version number for some reason.

2.3 Building a Pre-Release Project

Everyting above assumes that version is stored in source code and commited to git. Which is true for many tools. But
you don’t want to commit version for a prerelease version of application. We have a nice command for this use case
too:

> bulk with-version v1.3.6-pre4 your-build-command
1.3.5 -> 1.3.6-pre4
[.. output of your-build-command ..]
1.3.6-pre4 -> 1.3.5

This runs build with correct version and ensures that when build is complete you will get no version change in git
status.

8 Chapter 2. Version Bookkeeping

Bulk Documentation, Release 0.4.2

Since the common case is using git describe for actual version we have a shortcut for that:

> bulk with-git-version your-build-command
1.3.5 -> 1.3.5-4-gd923e59-dirty
[.. output of your-build-command ..]
1.3.5-4-gd923e59-dirty -> 1.3.5

(the -dirty here means you have modified git-tracked files locally)

Note: The git describe command is not strictly semver-compatible. I.e. the version x.y.z-n is treated
as lower than x.y.z and you’re supposed to use x.y.z+n for that. But for now we decided to stick to what
git describe provides for now. We may provide an option to fix that in future, in the meantime you can use
with-version.

2.4 Other Commands

To check if version number is fine (consistent) run:

> vagga bulk check-version
setup.py:6: (v1.3.5) version='1.3.5',
trafaret_config/__init__.py:1: (v1.3.5) __version__ = '1.3.5'

It shows you files and lines where version number is present and will fail if there is no version at all or version is
inconsistent between multiple files.

Note: it will not show you files and lines which are present in config file but has no version number found. So when
adding an entry in bulk.yaml you should run check-version and make sure the actual entry exists in the file.

To fix inconsistent version run:

> vagga bulk set-version v1.3.5 --force
setup.py:6: (v1.3.4 -> v1.3.5) version='1.3.5',
trafaret_config/__init__.py:1: (v1.2.3 -> v1.3.5) __version__ = '1.3.5'

Same restriction for not found version as for check-version applies here.

2.4. Other Commands 9

Bulk Documentation, Release 0.4.2

10 Chapter 2. Version Bookkeeping

CHAPTER 3

Q & A

3.1 Why version number and file existence is optional?

Sometimes we want to put and edit version number in generated files: lock-files, code generated things and other.

Since entries in bulk.yaml are almost never modified it’s much easier to check once after editing a file than to learn
rules of what is strict and what isn’t.

Here is just one example, when it is useful. Here is how we configure bulk in rust projects:

- file: Cargo.toml
block-start: ^\[package\]
block-end: ^\[.*\]
regex: ^version\s*=\s*"(\S+)"

- file: Cargo.lock
block-start: ^name\s*=\s*"project-name"
regex: ^version\s*=\s*"(\S+)"
block-end: ^\[.*\]

The important part is that we must update Cargo.lock so that bulk set-version/incr-version/bump
-g works fine (we modify ‘‘Cargo.lock‘‘ together with ‘‘Cargo.toml‘‘ and commit in the same commit, if we don’t do
that lockfile is update on next build and needs to be commited after).

But we also want to be able to run bulk with absent lockfile (in case we don’t commit it into a repository) or if we want
cargo to rebuild it from scratch.

11

Bulk Documentation, Release 0.4.2

12 Chapter 3. Q & A

CHAPTER 4

Indices and tables

• genindex

• search

13

	Configuring Bulk
	Overview
	Versions
	Package Metadata
	Repositories

	Version Bookkeeping
	Basics
	Releasing a Project
	Building a Pre-Release Project
	Other Commands

	Q & A
	Why version number and file existence is optional?

	Indices and tables

